The ARL Trade Space Visualizer (ATSV): An Engineering Decision-Making Tool

Gary Stump Mike Yukish Jay Martin

Product and Process Design Department ARL/Penn State

Timothy W. Simpson

Industrial and Mechanical Engineering Department
Penn State

Outline

- Underlying philosophy & vision
- Introduce the ARL Trade Space Visualizer (ATSV)
- Recent efforts that have extended the ATSV capabilities
 - Derivative display
 - Feature finder process
 - Uncertainty visualization
- Summary

Vision

Develop advanced design environments...

computer tools, applications, and networks to support modeling, simulation, analyses, workflow, collaboration, data vaulting, information access

that will allow design teams to...

- eliminate avoidable design errors...
 - modeling, simulation, and analysis; access to domain experts (collab); access to legacy and current design knowledge
- with no waiting...
 - workflow, collaboration, faster codes, central data repository
- and remember everything
 - configuration management, data vaulting, rationale capture; all models, documents, analyses results, etc. related to the design

Underlying Philosophy

- The assumption that we can capture a decision maker's preference a priori is wrong.
 - People want to shop, gain intuition about trades

Underlying Philosophy

- The assumption that we can capture a decision maker's preference a priori is wrong.
 - People want to shop, gain intuition about trades
- Design is decision making, optimization is automated decision making
 - "Automation can make people stupid" Gary Klein

Underlying Philosophy

- The assumption that we can capture a decision maker's preference a priori is wrong.
 - People want to shop, gain intuition about trades
- Design is decision making, optimization is automated decision making
 - "Automation can make people stupid" Gary Klein
- Trade space exploration is a complex task, requires a powerful interface
 - "No kazoo concerts in Carnegie Hall" Bran Ferran
 - Violin, F-16, ATSV are complex and noninutuitive initially...but empower the user with training and experience

Design by Shopping

- Large number of feasible designs can be generated using design automation.
- By exercising design automation, the feasible design space can be graphically displayed, allowing a decision-maker to form a preference after viewing the design space.
- Support search of complex design spaces using multidimensional visualization techniques.

Trade Space Exploration Using the ATSV

Build Model

- Assemble to generate 10,000+ pts
- Models are based on design rules found in open literature

Run Experiments

- Focus on trade study of interest
- 3000-4000 designs
- Augment design with geometry and more

Explore

- ATSV
- Look for known trends
- Apply constraints
- Visualize preference structures and Pareto frontiers
- Optimize

Rule capture for subsystems

- Use Mathematica
- Gather design rules in a format that is both readable and executable
- Supports literate programming paradigm
- Mathematical typesetting greatly enhances readability

(* compute the idealized theoretical impulse *)

$$\text{theoreticalImpulse} = \sqrt{\frac{2 \text{ k r tc}}{\text{gc (k-1)}} \left(1 - \left(\frac{1}{\text{pRatio}}\right)^{\frac{k-1}{k}}\right)} + \frac{1}{\text{pRatio}} \text{ areaRatio } \sqrt{\frac{\text{r tc}}{\text{k gc }\left(\frac{2}{k+1}\right)^{\frac{k-1}{k-1}}}}; \right)}$$

$$\text{exhaustVelocity} = \sqrt{\frac{2 \; k \; gc \; \; r \; \; tc}{k-1} \; \left(1 - \left(\frac{1}{pRatio}\right)^{\frac{k-1}{k}}\right)} \; ;$$

(* A is the correction factor due to the exhaust not exiting parallel to the engine *)

$$t = \frac{1 + \cos[\operatorname{coneAngle}^{\circ}]}{2}$$

(* cf, the thrust coefficient, is calculated from first principles, with the .002 factor tossed in to make the results correspond with WinPro *)

$$: f = (\lambda - .002) \sqrt{\frac{2 k^2}{k-1} \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}} \left(1 - \left(\frac{1}{pRatio}\right)^{\frac{k-1}{k}}\right) + \frac{1}{pRatio} \text{ areaRatio};}$$

Array Design Rules

arraySize _____, beamwidth_, dbAtWidth_, depth______ Module _____, beamwidth_, dbAtWidth_, depth______, solArray ,

speedOfSound =
$$1492.9 + \frac{\text{depth}}{61}$$
;

Coded in Mathematica

Body Design Rules

Converted to Mathematica Document

 Documents the rule set

 Also serves as executable model

ARL Trade Space Visualizer (ATSV)

- Multi-dimensional Data Visualization Capabilities
 - Glyph Plots
 - Histogram Plots
 - Parallel Coordinates
 - Scatter matrices
 - Brushing/LinkedViews
- Display multiple plots simultaneously

Apply Constraints to the Trade Space

Brushing – A multidimensional visualization technique that only displays designs that satisfy a user-defined upper and lower bounds to the trade space

Show only designs that cost less than 7000 units

Visualize Trends

Brush a variable that is not displayed in the glyph plot

Visualize Trends

Brush a variable that is not displayed in the glyph plot

Visualize Trends

Brush a variable that is not displayed in the glyph plot

Visualize Trends

Brush a variable that is not displayed in the glyph plot

Visualize Trends

Preference Structures and Pareto Frontiers

- The ATSV can visualize preference structures and Pareto frontiers.
- Designs that lie on the Pareto frontier are identified with white markings
- Maximize Δ V and minimize cost

Greater importance on minimizing cost

Greater importance on maximizing ΔV

Stereoscopic Visualization

- The ATSV uses advanced visualization hardware that displays data visualization plots in stereo mode
- The Visualization Toolkit (VTK) is used to output data visualization plots in stereo mode

E 5 5 5

Demo-Enumerations

- Coords
 - Prop choice, prop mass, DV
 - Color RW index
- Note individual curves for combinations

Demo

- Coords
 - Z_Qdelay,Y_thruput,Z_thruput
- Note: Are patterns due to network performance or artifacts of Opnet?
- Brush variables to look for correlations

Recent Efforts

- Recent efforts have focused on extending the ATSV capabilities
 - Derivative display
 - Feature finder tool
 - Uncertainty visualization

ATSV - Derivative Display

Motivation: Visualize derivative information around the selected point

Calculate Derivatives at a Design Point

- Procedure
 - A user selects a point in the trade space and the ATSV fits a surface approximation at the point
- Least-Squares Fit
 - -y = Xa, then $a = (X^TX)^{-1}X^Ty$
- Derivatives at a selected point are calculated by using the first derivatives of the polynomial surface approximations.

ATSV Derivative Display

1. Select a point in the trade space

2. Calculate a polynomial surface approximation for each output selected

3. Calculate and visualize the slope at the selected point

_ | D | X

Applied Research Laboratory

ATSV - Feature Finder

- Trace interesting features in trade spaces to conceptual model design rules
- Examples of interesting features include,
 - Discrete trends
 - Isosurfaces
 - Knees in the curve
 - Second-Order trends
- Possible causes
 - Constraints
 - Logical branches in the conceptual model

Steps to Implement Feature Finding

- Instrument the code to record and report (via flags) paths taken in logical branches
- Modify ATSV to visualize the flags, let user look for correlation
- Modify ATSV to trace flags back to the originating line of code

If(a > b, conditionA, conditionB)

Store the value of a > b, True or False

Max(a,b,c)

Store the index of maximum value {a,b,c}, int

Min(a,b,c)

Store the index of minimum value {a,b,c}, int

Feature Finder Process

- Identify interesting features in trade spaces (ATSV plotting capabilities)
- Visualize design rules values and identify design rules of interest
- Trace back to the design rules in the conceptual model

Applied Research Laboratory

Design Example

This glyph plot displays a knee in the curve which is caused by tank radii reaching a sizing constraint.

To accommodate additional volume. spherical tanks increase their radii, until a limit is reached. Then, the tanks become cylindrical if more volume is needed.

Red designs: Spherical tanks

Blue design: Cylindrical tanks

ATSV - Uncertainty Visualization

- Motivation: We are currently developing methods to capture a design's uncertainty using conceptual design.
- As a result, the ATSV has been extended to visualize a design's uncertainty

Visualize Design Feasibility Using ATSV Plots

- •The ATSV stores a design's feasibility and treats this metric as an extra dimension in the trade space.
- •For example, the feasibility of a design is mapped to the color and size of the glyph cubes

Large red designs : High feasibility

Small blue design : Low feasibility

Brush Feasibility

User can apply constraints to design feasibility

Mapping Options X . Axis muzzleVelocity Y - Axis RoundMass - I Z - Axis - 1 **PPS Energy** Feasiblity **-** 1 Color - 1 Feasiblity Orientation 18,01281 PPS Enerc Constant Transparency Constant 1899.1001 RoundMass Update Plot muzzleVelocity 🕵 Brush/Preference Control: Add Brush Preference Control Feasiblity J. Min PPS Mass 145.22 360.27 **☆** Max PPS Energy 8212.88 2.78E04 Feasiblity

🕵 Glyph Plot : D:\work\AIAAAlbany\data\uncertaintyTank.txt

Show only designs that are 90% - 100% feasible

Show only designs that are 0% - 90% feasible

Summary

- Extended ATSV capabilities to include derivative display, the feature finder tool, and uncertainty visualization
- Questions or comments ...

